United States Patent

US009442859B1

(12) (10) Patent No.: US 9,442,859 B1
Bolt et al. 45) Date of Patent: Sep. 13, 2016
(54) METHOD FOR ASYNCHRONOUS 5,996,088 A 11/1999 Frank et al.
POPULATION OF DATA CACHES USED ggggggg §1 12; éggg gluced o al. Cal
1567, andekar et al.
WITH MASS STORAGE DEVICES 6,760,815 Bl 7/2004 Traversat et al.
6,941,425 B2 9/2005 Osb:
(71) Applicant: Samsung Electronics Co., Ltd., 7,047,387 B2 5/2006 G(S)o(c)lrsrglzl
Suwon-si, Gyeonggi-do (KR) 7,117,306 B2* 10/2006 Rudeliccccoovivnnnnn 711/118
7,356,651 B2 4/2008 Liu et al.
(72) Inventors: Thomas R. Bolt, San Diego, CA (US); 7,406,473 Bl 7/2008 Brassow et al.
Clay Mayers, San Diego, CA (US) 7,428,636 Bl 9/2008 Waldspurger et al.
y viayers, £0: 7469321 B2 12/2008 Heller, Jr.
7,484,073 B2 1/2009 Cohen et al.
(73) Assignee: SAMSUNG ELECTRONICS CO., 7,509,460 B2 3/2009 Zeffer et al.
LTD. (KR) 7,512,769 Bl 3/2009 Lowell et al.
7,543,109 Bl 6/2009 Bell, Jr. et al.
(*) Notice: Subject to any disclaimer, the term of this 7,620,784 B2 1172009 Panabaker
. A 7,657,701 B2 2/2010 Sh: th,
patent is extended or adjusted under 35 7657706 B2 2/2010 Iy;nglua‘%éna an
U.S.C. 154(b) by 661 days. 7,660,953 B2 2/2010 Ohran
(21) Appl. No.: 13/775,164 (Continued)
OTHER PUBLICATIONS
(22) Filed: Feb. 23, 2013
Peter Desnoyers, “Analytic Modeling of SSD Write Performance”,
Related U.S. Application Data SYSTOR ’12 Proceedings of the Sth Annual International Systems
(60) Provisional application No. 61/660,801, filed on Jun. and Storage Conference, Jun. 2012, Article No. 12; ACM.
17, 2012. (Continued)
Gh IGn0t6FClI 200 (2006.01) Primary Examiner — Reginald Bragdon
GO6F 12/08 (2016.01) Assistant Examiner — Hannah A Faye-Joyner
(52) US. CL (74) Attorney, Agent, or Firm — Renaissance IP Law Group
CPC ... GOGF 12/0866 (2013.01); GO6F 12/0862 LLP
(2013.01); GO6F 12/0893 (2013.01) 57 ABSTRACT
(58) Field of Classification Search 7
CPC oo GOGF 11/2074; GO6F 12/0868 A method and system for transferring data from mass
See application file for complete search history. storage devices to the high speed data cache in a manner that
imposes minimal overhead to the normal input/output
(56) References Cited mechanism and minimizes the load placed on the device

U.S. PATENT DOCUMENTS

5,481,691 A 1/1996 Day, III et al.
5,673,394 A 9/1997 Fenwick et al.
5,765,181 A 6/1998 Oberlin et al.
5,983,324 A 11/1999 Ukai et al.

being cached is disclosed herein. Minimizing the load
placed on the slower device and minimizing the overhead of
processing input/output requests results in optimal perfor-
mance.

10 Claims, 5 Drawing Sheets

500

¥

—
501 Issuc asynchronous read requests for data from

high speed device to mass storage device when
there is a high probability that the data is in
internal cache of mass storage device.

5027

Read requested data subscquent to issuing
asynchronous rcad requests.

5037

Populate high speed device with requested data.

US 9,442,859 B1
Page 2

(56)

7,702,857
7,734,820
7,783,839
7,814,276
7,853,960
7,856,530
7,890,754
7,945,761
7,954,150
7,975,109
8,386,749
2005/0125513
2005/0232192
2008/0005529
2009/0216910
2010/0191929
2010/0299667
2010/0332786
2011/0010502

References Cited

U.S. PATENT DOCUMENTS

B2
Bl
B2
B2
Bl
Bl
B2
B2
B2
B2
B2
Al
Al
Al
Al

4/2010
6/2010
8/2010
10/2010
12/2010
12/2010
2/2011
5/2011
5/2011
7/2011
2/2013
6/2005
10/2005
1/2008
8/2009
7/2010
11/2010
12/2010
1/2011

Gill et al.

Ranade et al.

Gill et al.

Lin et al.

Agesen et al.

Mu

Waldspurger et al.

Subrahmanyam et al.

Croft et al.
Mcwilliams et al.
Dannowski et al.
Sin-Ling Lam et al.
Rawson, III
Morris
Duchesneau
Rawson, III
Ahmad et al.
Grohoski et al.
Wang et al.

2011/0069725 Al 3/2011 Shkunov et al.
2011/0119669 Al 5/2011 McRae
2011/0208900 Al 8/2011 Schuette et al.
2012/0017049 Al 1/2012 Hass
2012/0023077 Al 1/2012 Kann et al.
2012/0054445 Al 3/2012 Swart et al.
2012/0054447 Al 3/2012 Swart et al.
2012/0066483 Al 3/2012 Boury et al.
2012/0072576 Al 3/2012 Yumerefendi et al.
2012/0072691 Al 3/2012 Kawamura
2012/0079072 Al 3/2012 Serenyi et al.
2012/0096473 Al 4/2012 Durham et al.
2012/0124294 Al 5/2012 Atkisson et al.
2012/0303869 Al* 11/2012 Benhase et al. 711/103
2013/0013877 Al 1/2013 Tian

OTHER PUBLICATIONS

Ismail Ari et al, “ACME: Adaptive Caching Using Multiple
Experts”, Proceedings of the 2002 Workshop on Distributed Data
and Structures (WDAS 2002). Mar. 2002.

* cited by examiner

U.S. Patent Sep. 13,2016 Sheet 1 of 5 US 9,442,859 B1

MASS STORAGE DEVICE -

CpPU RAM 100
Programs ﬁm\\ /
(- L-1 Cache & 15
20a Data
N i E
2@ L-2 Cache L-3 Cache -
i System Bus l 20c

/O Interface

{
" HIGH SPEED DEVICE !
RAM
Asynchronous E
1/0 Communications
— Processor ey
>,,,, 1/0 E
Interface B Buffer
MGR
|
Flash Controller jmi
Flash . | Flash
s MEM MEM
!//
35
Flash | | 1 Flash
MEM MEM
) .. S

U.S. Patent Sep. 13,2016 Sheet 2 of 5 US 9,442,859 B1

55
L.—-' il
Mass
R Storage 10

U.S. Patent Sep. 13,2016 Sheet 3 of 5 US 9,442,859 B1

10 3/_\
v
]]] [e Mass
[I[E [Storage
=
\/

/

\\jiad Block 1
T Read Block 2
400

Réad Block 3

ik

Write Block 1

(////V\/f;: Block 2
% Block 3

A

FIG. 4

U.S. Patent

Sep. 13, 2016 Sheet 4 of 5

501)

Issue asynchronous read requests for data from
high speed device to mass storage device when
there is a high probability that the data is in
internal cache of mass storage device.

502 7

Read requested data subsequent to issuing
asynchronous read requests.

503 7

Populate high speed device with requested data.

FIG. 5

US 9,442,859 B1

500

U.S. Patent Sep. 13,2016 Sheet 5 of 5 US 9,442,859 B1

600
v
PopCache ,j
APP High Speed Mass Storage
Device Device

i readRequest (data)

data

[when high probability: data = cached]
\1;eadBlock1 (ASAP)

e

\\\
readBlock2(ASAP)
2l

\rgaildBlock...(ASAE) ;
— et

write (block1)

-
-

e

-
-

<" write (block2)

-
-

<~ write (block...)” " i

FIG. 6

US 9,442,859 Bl

1
METHOD FOR ASYNCHRONOUS
POPULATION OF DATA CACHES USED
WITH MASS STORAGE DEVICES

CROSS REFERENCE TO RELATED
APPLICATION

The present application claims priority to U.S. Provisional
Patent Application No. 61/660,801, filed on Jun. 17, 2012,
which is herby incorporated by reference in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to cache resources
for computer systems.

2. Description of the Related Art

Caches must be populated with data before they can begin
to offload data accesses from slower devices. This involves
copying data from the slower device being cached into the
higher speed cache device. Typically this involves a read
operation from the slower device followed by a write to the
cache device. Since the main intent of high speed caching
devices is to offload the slower mass storage devices, most
caching algorithms attempt to minimize /O requests to the
slower mass storage devices.

Traditional caches copy the data to the cache device
during the processing of an input/output request to the
slower device. This approach may be termed “opportunistic/
synchronous” population, since it takes advantage of the
opportunity afforded by the existing input/output request to
copy the data without having to perform an additional read
request to the device being cached. Unfortunately this
“opportunistic” approach introduces extra processing on the
input/output request since the data cannot be released to the
origin of the input/output request until the copy has been
completed, in effect synchronizing the act of copying the
data for the purposes of populating the cache and the
processing of an input/output request. Furthermore this type
of “opportunistic” cache population can be complicated by
performance optimizations that coalesce non-adjacent input/
output requests by creating scatter/gather lists that discard
portions of the data represented by the input/output request.
In environments that perform this type of optimization the
“opportunistic/synchronous” cache population algorithms
must inspect the memory buffers associated with all out-
standing input/output requests to ensure there are no over-
lapping regions that could corrupt the data being copied to
populate the cache.

General definitions for terms utilized in the pertinent art
are set forth below.

Application Programming Interface (API) is a collection
of computer software code, usually a set of class definitions,
that can perform a set of related complex tasks, but has a
limited set of controls that may be manipulated by other
software-code entities. The set of controls is deliberately
limited for the sake of clarity and ease of use, so that
programmers do not have to work with the detail contained
within the given API itself.

“Cache” refers to the memory in which data is stored in
order to make the data more readily and speedily accessible,

15

20

25

30

35

50

55

60

65

2

transparently. When a cache is exhausted, it is flushed of
data, to be replaced with the next cache according to a
replacement algorithm.

“Cached data” is data in cache memory duplicating origi-
nal values stored elsewhere (such as the hard disk) on a
computer.

“Cache hit” refers to when the processor looks for data in
cache memory and finds the data. A cache hit places less
strain on input/output (I/O) resources and limited network
resources.

“Cache miss” refers to when the processor looks for data
in cache memory and finds that it is not there, resulting in
having to read from the main memory or hard disk. Data
retrieved during a cache miss is often written into the cache
in anticipation of further need for it.

“Caching resources” refers to the physical or virtual
components of limited availability required for caches or the
process of caching, such as memory or a processing unit.

“Cloud computing” is generally defined as using comput-
ing resources, primarily servers, owned by a third party
provider (such as the AMAZON ELASTIC COMPUTE
CLOUD, JOYENT, and GOOGLE APPS) such that the user
does not need to make a substantial investment in computer
hardware and scale resources depending on the user’s needs.
Cloud computing primarily involves Web applications but
can include storage, raw computing and other specialized
services.

Compatibility library is a software program that provides
an interface between computer programs, and in particular
an interface that provides an interface between a proprietary
environment and an open source or GNU GPL device driver
that provides the supporting functionality for the device
driver.

“Data center” is a centralized location where computing
resources (such as, host computers, servers, applications,
databases, or network access) critical to an organization are
maintained in a highly controlled physical environment.

Device driver is a software program that allows a hard-
ware device to interact with software installed on the hard-
ware device.

“Execution environments” refers to operating systems or
virtual machines in which executable programs are
executed. When a computer program is executed, or run-
ning, a process is created.

Function pointer is a programming language data type
that invokes a function in a computer memory.

GNU, General Public License is a license for an open
source operating system based on UNIX, which requires that
derived works be distributed under the same license terms.

Hypervisor is a hardware virtualization technique that
allows a computer to host multiple operating systems by
providing a guest operating system with a virtual operating
platform.

Kernel is a component of an operating system that con-
nects a computer’s software applications to the computer’s
hardware.

“Load balancing” refers to distributing workload across
multiple computers, central processing units, or other
resources, to achieve optimal resource utilization, maximize
throughput, minimize response time, and avoid overload.

“Logical unit number” or “LUN” is an identification
number given to logical units (devices) connected to a SCSI
“Small Computer System Interface” adapter; typically, the
logical disks in a storage area network (SAN).

“Mass storage devices” refers to removable or non-
removable media that can store large amounts of data, such

US 9,442,859 Bl

3

as tape drives, redundant array of independent disks (RAID),
magnetic disks, or flash drives.

“Non-volatile caching device” refers to a storage device
that can retain data within memory even when the device is
not powered on, such as a flash drive.

“Open source software” or “OSS” refers to computer
software that is available with open access to the source code
(design and implementation), which is typically free.

“Process identifier”, “process ID”, or “PID” is a number
used by operating systems (OS) to uniquely identify a
process, an OS object that consists of an executable pro-
gram, a set of virtual memory addresses, and one or more
threads. When a program runs, a process is created.

Semaphore is an abstract data type that provides an
abstraction for controlling access to a common resource in
a parallel programming environment by multiple processes.

“Virtualization” refers to a computer software/hardware
platform that allows running several operating systems
simultaneously on the same computer. VMware vSphere
Hypervisor™ (ESXi) is an example of a hardware virtual-
ization product.

“Virtualized environment” refers to hypervisor, or virtu-
alization, systems.

Virtual Machine is a software abstraction of a physical
computer.

“Web-Browser” is a complex software program, resident
in a client computer, that is capable of loading and display-
ing text and images and exhibiting behaviors as encoded in
HTML (HyperText Markup Language) from the Internet,
and also from the client computer’s memory. Major brows-
ers include MICROSOFT INTERNET EXPLORER,
NETSCAPE, APPLE SAFARI, MOZILLA FIREFOX, and
OPERA.

“Web-Server” is a computer able to simultaneously man-
age many Internet information-exchange processes at the
same time. Normally, server computers are more powerful
than client computers, and are administratively and/or geo-
graphically centralized. An interactive-form information-
collection process generally is controlled from a server
computer.

Data within computing environments may be cached to
high speed devices to improve performance. The majority of
data is stored on mass storage devices (i.e. disk drives and
disk arrays) and transferred to caches devices on an as
needed basis. The placement of data within the high speed
device is referred to as population of the cache and requires
the transfer of data from the slower device being cached to
the high speed device. The transfer of data to the high speed
devices may create extra load on the slower device being
cached and/or add overhead (extra work or delays not
directly related to satisfying the input/output request) to the
fetching of data.

BRIEF SUMMARY OF THE INVENTION

The present invention discloses a method for transferring
data from mass storage devices to the high speed data cache
in a manner that imposes minimal overhead to the normal
input/output mechanism and minimizes the load placed on
the device being cached. Minimizing the load placed on the
slower device and minimizing the overhead of processing
input/output requests results in optimal performance.

The purpose of this invention is to populate a high speed
cache device as efficiently as possible with respect to impact
on the slower device being cached and normal input/ouput
processing.

10

15

20

25

30

35

40

45

50

55

60

65

4

Having briefly described the present invention, the above
and further objects, features and advantages thereof will be
recognized by those skilled in the pertinent art from the
following detailed description of the invention when taken
in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram of a system for populating a
high speed cache device in an efficient manner.

FIG. 2 is an image of a mechanical hard disk drive.

FIG. 3 is a block diagram of a system for populating a
high speed cache device in an efficient manner.

FIG. 4 is a block diagram of a system of an asynchronous
process.

FIG. 5 is a flow chart for a method for populating a high
speed cache device in an efficient manner.

FIG. 6 is a sequence diagram for populating a high speed
cache device in an efficient manner.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention populates a cache device in an
asynchronous manner and counter-intuitively issues more
input/output requests to a slower device in a manner that
actually improves efficiency. Since the cache device popu-
lation mechanism is asynchronous, the cache device popu-
lation mechanism imposes minimal additional processing
overhead on normal input/output requests (e.g. the cache
device population mechanism does not have to delay pro-
cessing while the cache device population mechanism cop-
ies the data nor does the cache device population mechanism
have to inspect the destination memory buffers). Although
the method for populating a high speed cache device in an
efficient manner is asynchronous, the key to efficiency is a
direct correlation of the asynchronous cache population with
the normal input/output processing.

Modern mass storage devices are electro-mechanical in
nature and orders of magnitude slower in access time than
solid state devices such as memory or flash based caches.
FIG. 1 illustrates a system 100 for populating a high speed
cache device in an efficient manner. The system 100 pref-
erably comprises a mass storage device 10 and a high speed
device 30.

The mass storage device 10 preferably comprises a
memory 15, a central processing unit, a system bus, an
input/output interface and caches 20a, 206 and 20c¢. The high
speed cache device 30 preferably comprises an input/output
interface, a memory, a processor, a buffer manager, a flash
controller and multiple flash memory modules 35.

In order to maximize performance, the mass storage
device 10 contains internal caches 20a-20c. The major
performance limitations of the mass storage device 10 are
related to the hard drives 11 of the mass storage device 10,
as shown in FIG. 2. The movement of the actuator arms 12
of the hard drive 11 and the physical positioning of the
read/write heads 13 (seeking) as well as rotational delays of
the spinning disks 14. Due to the large delays incurred
positioning the heads 13 and waiting for the correct disk 14
location to spin under the read/write heads 13, most mass
storage systems read entire tracks of data off a disk 14 into
their internal caches in the hopes of being able to satisfy
subsequent read accesses without having to position the
heads 13 or wait for rotational delays.

US 9,442,859 Bl

5

FIG. 3 shows an example system 300 of a networked
environment where client devices (desktop computers) 50a-
50c¢ are requesting data from a server 55 and the server 55
is fetching the data from the mass storage device 10. The
high speed device 30 issues a read request at the same time
since the internal cache of the mass storage device 10 will
either already have the data, a cache hit, or it will write the
requested data after a cache miss.

If data is contained within the internal cache 20a-20c of
a mass storage device 10, the impact of satisfying a read
request is minimal and limited mainly to the bandwidth
consumed by transferring the data from the mass storage
device 10. Read access to data within the internal cache
204a-20c¢ does not involve the most constrained resource of
the mass storage device 10, the read/write heads 13 and the
associated positioning mechanisms 12.

As shown in FIG. 4, the mechanism for populating the
high speed cache 30 involves issuing asynchronous read
requests 400 to the mass storage device 10 when there is a
high probability that the requested data is present within the
internal cache 20 of the mass storage device 10. When the
requested data is already in the internal cache 20 of the mass
storage device 10, the impact of the additional asynchronous
read request is minimized since the asynchronous read
request does not require the resources of the read/write
heads. Furthermore, since the internal caches 20 of the mass
storage device 10 typically cache entire disk tracks and
perform read-ahead caching of logically adjacent disk loca-
tions, the asynchronous read request used to populate the
high speed cache device 30 is of a size that is optimized for
the high speed cache device 30 regardless of the size of the
input/output request that triggered the population of the data
in the high speed cache device 30.

FIG. 5 is a flow chart of the method 500 of the present
invention. A computer application issues a read request for
data that would be beneficial to load into a cache. This action
creates a situation where there is a high probability that the
data will be loaded into the internal cache 20 of the slow
mass storage device 10. At block 501, as soon as possible
(since the probability of the data remaining in the internal
cache 20 of the mass storage device 10 decreases over time),
asynchronous read requests are issued from the flash-based
high speed device 30 to the slower mass storage device 10
when there is a high probability that the data is in the internal
cache 20 of the mass storage device 10. The requested data
is read immediately, subsequent to issuing the asynchronous
read requests at block 502. Then, at block 503, the high
speed device 30 is populated with the requested data.

The preferred implementation involves the signaling of an
event from the main processing of the input/output read
request for data that is desired to be populated in the high
speed caching device 30 to an asynchronous process respon-
sible for populating the high speed cache device 30. The
signaling of this event contains the logical address of the
data desired to be populated and imposes minimal impact to
the main processing of the read request. Preferably, this
event is queued to the asynchronous process in a “last-in-
first-out” (LIFO) manner.

The asynchronous process, upon receipt of an event, reads
the requested data as soon as possible. Reading the data as
soon as possible after the read that triggered the cache
population event maximizes the probability that the
requested data is within the internal cache 20 of the mass
storage device 10. The size of the read request to populate
the high speed cache device 30 is optimized for the high

10

15

20

25

30

35

40

45

50

55

60

65

6

speed cache device 30, taking advantage of whole track
reads and read ahead in the internal cache of the slower mass
storage device 10.

The use of a LIFO queue to process the asynchronous
cache population process allows the asynchronous process
to maximize the probability that the data requested is in the
internal cache 20 of the mass storage device 10. If the
asynchronous process times the read requests, the asynchro-
nous process can determine when it is not able to keep up
with the eviction of stale data within the internal caches 20
of the slower mass storage device 10. If the asynchronous
processing detects that read requests are not being processed
from the internal caches 20 by the amount of time necessary
to satisfy the read requests, the asynchronous process purges
older events from the queue. Doing so causes these cache
population events to be “lost.”

Lost cache population events result in a slower population
of the high speed cache device 30, however lost cache
population events avoid cache population reads from pre-
senting extra load on the constrained resources of the
read/write heads 13 in the mass storage device 10.

The mechanism for populating a high speed cache device
in an efficient manner is alternatively implemented without
the use of a LIFO queuing mechanism. Doing so decreases
the likelihood of satisfying the asynchronous cache popu-
lation read requests. Although events are listed as the
signaling method between the main processing of input/
output requests and the asynchronous cache population
process, other mechanisms such as a combination of queues,
messages, or other data structures and semaphores, inter-
rupts or other notifications may be used. The use of the term
“process” is generic and may refer to any scheduling mecha-
nism such as an actual process or threading implementation.

The present invention minimizes processing delays of
normal input output requests. The mechanism for populating
a high speed cache device in an efficient manner preferably
does not require delays to copy data buffers during normal
input/output processing and does not need to verify the
integrity of data read during normal input/output processing
prior to populating the high speed cache device. The mecha-
nism for populating a high speed cache device in an efficient
manner requires only a notification of the asynchronous
population process when desired data is highly likely to be
present in the internal cache of the mass storage device.

The present invention preferably reduces demands on the
most highly limited resources of the mass storage device 10.
By maximizing the probability the read request used to
populate the high speed cache device 30 will be present in
the internal cache 20 of the mass storage device 10, the
mechanism reduces load on the read write heads 13, asso-
ciated positioning mechanism, as well as minimizing rota-
tional latencies.

The present invention allows the cache to be populated in
increments other than the size of an opportunistic input/
output request. The mechanism for populating a high speed
cache device in an efficient manner can take advantage of
whole track caching and read ahead caching in the mass
storage device 10 to efficiently populate the high speed
cache device 30 regardless of the size of normal input/output
requests.

FIG. 6 illustrates a sequence diagram for populating a
high speed cache device in an efficient manner. A computer
application (APP) issues a read request for data that would
be beneficial to load into a cache. This action creates a
situation where there is a high probability that the data will
be loaded into the internal cache 20 of the slow mass storage
device 10. As soon as possible (since the probability of the

US 9,442,859 Bl

7

data remaining in the internal cache 20 of the mass storage
device 10 decreases over time), asynchronous read requests
are issued from the flash-based high speed device 30 to the
slower mass storage device 10 when there is a high prob-
ability that the data is in the internal cache 20 of the mass
storage device 10. The requested data is read immediately,
subsequent to issuing the asynchronous read requests. Then,
the requested data is written to the high speed device.

From the foregoing it is believed that those skilled in the
pertinent art will recognize the meritorious advancement of
this invention and will readily understand that while the
present invention has been described in association with a
preferred embodiment thereof, and other embodiments illus-
trated in the accompanying drawings, numerous changes
modification and substitutions of equivalents may be made
therein without departing from the spirit and scope of this
invention which is intended to be unlimited by the foregoing
except as may appear in the following appended claim.
Therefore, the embodiments of the invention in which an
exclusive property or privilege is claimed are defined in the
following appended claims.

We claim as our invention the following:

1. A method for populating a high speed cache device in
an efficient manner, the method comprising:

issuing, by a computer server, a read request for request-

ing data;

issuing, by a high speed cache device that is separate from

the computer server, a plurality of asynchronous read
requests for at least the requested data to a mass storage
device that is separate from the high speed cache device
contemporaneously with the computer server issuing
the read request when there is a high probability that the
requested data is present within an internal cache of the
mass storage device;

reading the requested data immediately subsequent to the

issuing of the plurality of asynchronous read requests;
and

populating the high speed cache device with at least the

requested data.

2. The method according to claim 1 wherein the mass
storage device comprises a plurality of read/write heads and
a plurality of spinning disks.

3. The method according to claim 1 wherein the high
speed cache device comprises a plurality of flash modules.

4. The method according to claim 1 further comprising:
determining that the plurality of asynchronous read requests
are not being processed from the internal cache of the mass
storage device in an amount of time necessary to satisty the
plurality of asynchronous read requests; and purging a
plurality of older cache population events from a queue
responsive to determining that the plurality of asynchronous
read requests are not being processed from the internal cache
of the mass storage device in the amount of time necessary
to satisfy the plurality of asynchronous read requests.

10

15

20

25

30

35

40

45

50

8

5. The method according to claim 1 wherein issuing the
plurality of asynchronous read requests for the requested
data further comprises:

issuing a first asynchronous read request for a first portion
of the requested data to the mass storage device from
the high speed cache device; and

prior to populating the high speed cache device with the
first portion of the requested data, issuing a second
asynchronous read request for a second portion of the
requested data to the mass storage device from the high
speed cache device.

6. A system for populating a high speed cache device in

an efficient manner, the system comprising:

a computer server configured to issue a read request for
requested data;

a mass storage device separate from the computer server,
and comprising an internal cache having the requested
data;

a high speed cache device separate from the mass storage
device and separate from the computer server, the high
speed cache device configured to issue a plurality of
asynchronous read requests for at least the requested
data to the mass storage device at the same time as the
computer server issues the read request when there is a
high probability that the requested data is present
within the internal cache of the mass storage device;

wherein the high speed cache device is populated with at
least the requested data.

7. The system according to claim 6 wherein the high speed

cache device comprises a plurality of flash modules.

8. The system according to claim 6 wherein:

the computer server is configured to issue the read request
for the requested data in a last-in-first-out manner;

the high speed cache device is configured to issue the
plurality of asynchronous read requests from the high
speed cache device to the mass storage device for the
requested data as soon as possible responsive to receiv-
ing the read request; and

a size of the asynchronous read requests takes advantage
of whole track reads and read ahead in the internal
cache of the mass storage device.

9. The system according to claim 6 wherein the mass
storage device comprises a plurality of read/write heads and
a plurality of spinning disks.

10. The system according to claim 6, wherein:

the high speed cache device is configured to issue a first
asynchronous read request for a first portion of the
requested data to the mass storage device; and

prior to the high speed cache device being populated with
the first portion of the requested data, the high speed
cache device is configured to issue a second asynchro-
nous read request for a second portion of the requested
data to the mass storage device.

#* #* #* #* #*

